Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(48): 45474-45482, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38075831

RESUMO

Volatile organic compounds (VOCs) are among the most potential pollutant groups that cause air quality degradation because of their toxic effects on human health. Although catalytic oxidation is an effective method for VOC removal, further studies are required to develop more efficient and affordable catalysts. In this study, cerium (Ce) was doped into a CuFe-layered material (Ce-CuFe) to improve the catalytic oxidation efficiencies of N,N-dimethylacetamide (DMAC) and o-xylene. The synthesized catalyst was characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray spectroscopy (EDS), Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) analysis. XRD analysis confirmed the successful doping of Ce atoms into the CuFe-layered structure, while in the SEM and TEM images the catalyst appeared as uniformly distributed two-dimensional plate-like particles. The catalytic oxidation performance of the Ce-CuFe was investigated at six temperatures between 200 and 450 °C and three space velocities in the range of 31000-155000 mLh-1g-1 for the oxidation of DMAC and o-xylene, which functioned as polar and nonpolar solvents, respectively. At 200 °C, the Ce-CuFe catalyst performed 50% greater when oxidizing o-xylene while exhibiting a DMAC oxidation efficiency that was 42% greater than that achieved using undoped CuFe. The Ce-CuFe could remove DMAC and o-xylene with an efficiency higher than 95% at 450 °C. Furthermore, Ce-doped CuFe exhibited high resistance against moisture and outstanding reusability performance with only a 5.6% efficiency loss after nine reuse cycles. Overall, the incorporation of Ce into a CuFe-layered material is a promising strategy for the oxidation of various VOCs.

2.
Bioprocess Biosyst Eng ; 45(12): 2007-2017, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36352044

RESUMO

Replacement of the petroleum-based refineries with the biorefinery is regarded as an essential step towards a "zero" waste (circular) economy. Biobased succinic acid (SA) is listed by the United States Department of Energy among the top ten chemicals with the potential to replace chemicals from petroleum synthesis with renewable sources. Purification of bio-based succinic acid from fermentation by-products such as alcohols, formic acid, acetic acid and lactic is a major drawback of fermentative SA production. This study addresses this issue through a novel chromatographic separation using three distinct anionic resins: Amberlite IRA958 Cl (strong base anion exchange resin), Amberlite HPR 900 OH (strong base anion exchange resin) and Amberlyst A21 (week base anion exchange resin). The influence of process variables such as flow rate (0.18 BV/h, 0.42 BV/h and 0.84 BV/h), eluent concentration (1%, 5% and 10% HCl) and temperature (20, 30 and 40 °C) were investigated. The results indicated SA separation efficiency of 76.1%, 69.3% and 81.2% for Amberlyst A21, Amberlite HPR 900 OH and Amberlite IRA958 Cl, respectively. As the regenerant HCl concentration increased from 1 to 10%, calculated succinic acid separation efficiencies decreased from 80.3 to 70.7%. Notably, as the regenerant strength increased from 1 to 10%, the total amount of organic acids desorbed from the resin sharply increased. At operation temperatures of 20, 30 and 40 °C, SA separation efficacies were 81.2%, 73.9% and 76.4%, respectively. The insights from this study will be of great value in design of chromatographic separation systems for organic acids.


Assuntos
Resinas de Troca Aniônica , Petróleo , Resinas de Troca Aniônica/química , Fermentação , Ácido Succínico/química , Soro do Leite
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...